Cycle double covers and spanning minors I
نویسندگان
چکیده
Define a graph to be a Kotzig graph if it is m-regular and has an m-edge colouring in which each pair of colours form a Hamiltonian cycle. We show that every cubic graph with spanning subgraph consisting of a subdivision of a Kotzig graph together with even cycles has a cycle double cover, in fact a 6-CDC. We prove this for two other families of graphs similar to Kotzig graphs as well. In particular, let F be a 2-factor in a cubic graph G and denote by GF the pseudograph obtained by contracting each component in F . We show that if there exist a cycle in GF through all vertices of odd degree, then G has a CDC. We conjecture that every 3-connected cubic graph contains a spanning subgraph homeomorphic to a Kotzig graph. In a sequel we show that every cubic graph with a spanning homeomorph of a 2-connected cubic graph on at most 10 vertices has a CDC.
منابع مشابه
Cycle double covers and spanning minors II
In this paper we continue our investigations from [HM01] regarding spanning subgraphs which imply the existence of cycle double covers. We prove that if a cubic graph G has a spanning subgraph isomorphic to a subdivision of a bridgeless cubic graph on at most 10 vertices then G has a CDC. A notable result is thus that a cubic graph with a spanning Petersen minor has a CDC, a result also obtaine...
متن کاملCycle double covers and the semi-Kotzig frame
Let H be a cubic graph admitting a 3-edge-coloring c : E(H) → Z3 such that the edges colored with 0 and μ ∈ {1, 2} induce a Hamilton circuit of H and the edges colored with 1 and 2 induce a 2-factor F . The graph H is semi-Kotzig if switching colors of edges in any even subgraph of F yields a new 3-edge-coloring ofH having the same property as c . A spanning subgraphH of a cubic graph G is call...
متن کاملOn semiextensions and circuit double covers
We introduce a concept of a semiextension of a cycle, and we conjecture a simple necessary and sufficient condition for its existence. It is shown that our conjecture implies a strong form of the circuit double cover conjecture. We prove that the conjecture is equivalent to its restriction to cubic graphs, and we show that it holds for every cycle which is a spanning subgraph of the given graph...
متن کاملOn the existence of special depth first search trees
The Depth First Search (DFS) algorithm is one of the basic techniques which is used in a very large variety of graph algorithms. Most applications of the DFS involve the construction of a depth-first spanning tree (DFS tree). In this paper, we give a complete characterization of all the graphs in which every spanning tree is a DFS tree. These graphs are called Total −DFS −Graphs. We prove that ...
متن کاملSpanning cycles in regular matroids without M*(K5) minors
Catlin and Jaeger proved that the cycle matroid of a 4-edge-connected graph has a spanning cycle. This result can not be generalized to regular matroids as there exist infinitely many connected cographic matroids, each of which contains a M(K5) minor and has arbitrarily large cogirth, that do not have spanning cycles. In this paper, we proved that if a connected regular matroid without aM(K5)-m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comb. Theory, Ser. B
دوره 96 شماره
صفحات -
تاریخ انتشار 2006